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This article describes an investigation of a statistical hypothesis testing method

for detecting changes in the characteristics of an observed time series. The work is
motivated by the need for practical automated methods for on-line monitoring of

DSN equipment to detect failures and changes in behavior. In particular, on-line

monitoring of the motor current in a DSN 34-m beam waveguide (BWG) antenna

is used as an example. The algorithm is based on a measure of the information

theoretic distance between two autoregressive models: one estimated with data from
a dynamic reference window and one estimated with data from a sliding reference

window. The Hinkley cumulative sum stopping rule is utilized to detect a change

in the mean of this distance measure, corresponding to the detection of a change in

the underlying process. The basic theory behind this two-model test is presented,
and the problem of practical implementation is addressed, examining windowing

methods, model estimation, and detection parameter assignment. Results from the
five fault-transition simulations are presented to show the possible limitations of

the detection method, and suggestions for future implementation are given.

I. Introduction

The motivation for this study is on-line performance

monitoring of DSN electromechanical and hydraulic equip-
ment, particularly the pointing system components of the

DSN 70-m and 34-m antennas. Previous articles [1-3] have
described in detail the motivation behind on-line monitor-

ing: Essentially as the antennas get older and deep space

missions are of longer duration, early detection of compo-
nent failures becomes more critical.

Simple thresholding methods, whereby detection of

change occurs when the magnitude of the observed sig-

nal exceeds prespecified alarm limits are available in com-

mercial off-the-shelf products and widely used for on-line

monitoring. However, the simple thresholding approach
is nonadaptive and may be susceptible to false alarms in

the presence of noise. In this article more sophisticated

methods, which not only account for changes in the signal

amplitude, but can also detect changes in the underlying

statistical characteristics of the signal in cases where no

amplitude change is observable, are investigated.

Various methods which detect changes in the mean of

a signal directly by utilizing statistical cumulative sum
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(cusum) schemes have been thoroughly examined in [4-
7]. These methods generally work well when there is suf-

ficient prior knowledge about the magnitude of change.
Mean-change detection algorithms have been well-defined

for observations which consist of independent, identically

distributed Gaussian random variables; however, when
there is a significant time correlation in the observations

(as is almost always the ease in applications of interest),
the usefulness of these methods is diminished, and other

techniques must be utilized.

One promising technique for detecting parametric

changes in the model of the process is well documented

in [8,9]. This method computes a cumulative sum based
on the information-theoretic distance between two esti-

mated autoregressive (AR) models of the process. The

focus of this article is to summarize the theory underlying

this cusum algorithm and to examine the problems and
necessary adaptations for practical implementation in a

DSN application.

In choosing the two-model algorithm for implementa-

tion, a test was desired with the following properties:

(1) Few (not necessarily minimal) false alarms.

(2) Robustness with respect to variance in model esti-
mates.

(3) Few a priori assignments of detection parameters

and the use of on-line estimated parameters.

(4) Symmetry with respect to transitions from both low-

to-high and high-to-low signal variance, and vice

versa, and with respect to changes in the AR pa-
rameters.

The two-model algorithm described in this article uti-

lizes two filters, a growing memory AR model and a local

memory AR model, which are implemented by using two

data windows: a reference window of growing length and
a fixed-length window. A statistic based on conditional
Kullback information measures the distance between the

two models based on the innovations from both filters.

The crossing of a threshold by the cumulative sum of this

statistic detects the distribution change. An advantage of
this technique is that it will detect a change in the actual

AR parameters of the process or a change in the energy
of the signal. Section II of this article presents the AR

model change hypothesis. Section III focuses on the the-

oretical derivation of the cumulative sum, while Section

IV examines the problems for implementing the algorithm

for DSN applications. Results of simulated fault detec-
tion are discussed in Section V. Limitations of the method

are examined in Section VI, and Section VII compares the

method with an alternate approach using hidden Markov
models.

II. Autoregressive Model Change
Hypothesis

Suppose the observed signal (Yn) can be modeled by an

autoregressive process of order p, that is

--rl--1

Yn = OpY._p + e. (1)

_--rn. -1

where Y,__p is the column vector of the past p values of
the observation signal, 0p is the AR(p) parameter vector,

and the first term on the right is a vector dot product. It is

well established in time series analysis that any stationary

signal (or any piecewise stationary signal) can be modeled

as an AR model of sufficient (finite) order, plus a deter-

ministic term. To test for change, assume there exists a

time r such that, for n _< r

0 (72 2
Op = Op and e_ = a_o (2)

and for n > r

Op=Op / and a2 = 2_, _: (3)

where a_, is the variance of the prediction error e,_ at time

n. These changes in AlL parameters reflect an underlying
change in the probability laws governing the process. The

problem is to test sequentially at each time n, the null

hypothesis H ° of no change in the probability law of the

process against the alternate hypothesis H_ that the above
change in probability laws occurs at a time r < n.

III. Cumulative Sum Detection Statistic

The most obvious test for difference between two mod-

els is the likelihood ratio test. This tests the null hypoth-

esis H 2 that all observations up to time n follow the joint

probability law pO (yn,7 n-l) against the hypothesis that

all observations up to time n follow pl (y_,y_-l) N.
However, the sequential test desired for application is the

conditionalhypothesis test, which tests the null hypothesis
H ° against the alternate hypothesis H_ that the probabil-

ity distribution changes from p0 to pl at time r < n (as
stated in the introduction). Hence, letting y denote the

value of the variable Yk, the detection test is the sequen-
tial cumulative sum test:
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undergoes a decrease from an initial mean of zero, reflect-

ing the increasing difference in the two models after the
change in distributions; hence a one-sided Hinkley test is
used. Detection occurs at the first time when D > h for a

preset threshold h. For recursive computation on line, the
value

U,_= U,,_I + Tn-6 (11)

can be used [9]. Implementation of this scheme will be
discussed in the next section.

IV. Implementation of the Two-Model Method

A. Model Order

Prior work modeling the elevation pointing system mo-
tor current from the DSS-13 34-m BWG antenna led to

an autoregressive-exogenous input (ARX)(5,3,1) model as

a first approximation to the proper model [1]; this model

is defined by 3 poles, 5 zeros, and 1 delay in the transfer

function. The order of this model was determined using
AkaJke's information criterion. Further work has shown

that comparing the model parameters of the ARX(5,3,1)

to AR(5) yields no significant difference in the estimated
autoregressive coefficients. Hence, although the model un-

derlying the process has yet to be properly identified, it

appears that an AR(5) model may be sufficient for change
detection purposes. However, it should be noted that since

the detector relies directly on the goodness-of-fit of the

model, the opportunity exists to potentiMiy improve the
model identification method in order to reduce false alarms

due to incorrectly estimated prediction errors.

B. Window Implementation

There are two well-documented approaches to block

window implementation of the two-model detection algo-

rithm. The first relies on a fixed-length reference window
which is allowed initially to stabilize in a controlled pe-

riod of normal operation in order to estimate the AR(p)
reference model. This model is then compared with the

estimated model in a moving fixed-length window, with
detection when the distance between these two models be-

comes sufficiently large. In the past, the difference be-
tween these two models has been measured by the mean

quadratic difference between the two spectra [14]. Bas-

seville and Benveniste [8] report that the disadvantages

of this approach are a large variance in the metric and an

asymmetrical test for increases or decreases in signal noise.

A more robust, dynamical window system employs

a growing-memory window for reference along with the

fixed-length sliding window. First a growing reference win-
dow is allowed to attain a stable model. As soon as the

window stabilizes, a shorter fixed-length sliding window

begins to move along the time series with the reference
window. At each time n, a model is estimated in each

data window. When a transition occurs in the spectrum

of the signal, the abrupt change is reflected in the local

window, while the reference model remains relatively un-

changed due to its long memory. The information metric

between these two windows is measured by the statistic T

of Eq. (9), which is integrated in the cumulative sum U of

Eq. (8); then the Hinkley decision rule given by Eq. (10)
is invoked. The use of this growing reference window in-

stead of a static reference window greatly reduces the rate

of false alarms by adapting to the dynamic nature of the

system [8].

C. Model Estimation

The first attempt at implementing the algorithm em-
ployed a dynamic block window scheme for model estima-

tion. Sequentially, at each time n an AR(5) model was

estimated for both the growing window and the sliding

window. Treating each window as a batch, each model

was estimated using the "forward-backward" AR estima-

tion algorithm and then the cusum was computed based on
the model errors. As expected, choosing an apppropriate

window size for the fixed-length window was critical in the

implementation of the algorithm. An undersized window

leads to unstable model estimation, creating largely vary-
ing prediction errors which lead to false alarms. On the

other hand, oversized local windows lead to longer delays

until detection and more computation. A window size of

200 to 400 data points (approximately 4 to 8 seconds at
the sampling rate of 50 Hz) yielded a reasonable fit. Below

a window size of 200, the AR model was highly unstable
and produced unreliable results.

From a practical standpoint, this nonrecursive algo-
rithm was eomputationally intensive and infeasible to im-

plement on-line.

A second attempt utilized a recursive algorithm for

model estimation. The Normalized Gradient approach of

the recursive least mean squares (LMS) parameter estima-
tion was used to fit the AR(5) model [15]. For the linear

regression

]_n =Yn-10 (12)
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the parameter estimate _,_ is

where 7 is the (constant) gain. For the normalized ap-

proach, 7 is replaced by

3,, = __..__7 (14)
Iy"-Xl 2

This is the same method employed by Eggers and Khuon

[9] with their recursive LMS learning-parameter method,

which they showed will converge to give the true AR coef-

ficients. The dynamic windowing method described above

is implemented by choosing the gains 3'1,3'2 correspond-

ing to the reference window and the fixed-size window,
respectively, such that the model is weighted to reflect
the information content of the most recent observations.

Hence, the gains are chosen such that 0 < 3'1 < 3'2, reflect-

ing the abrupt change in spectral characteristics in the
local model while leaving the reference model relatively

unchanged [9]. The gain is usually chosen in the range
0.001 to 0.02 [15]. In the work reported here, 3'1 was cho-

sen to be 0.001, while 3'2 was set to 0.02, for maximum
distinction between the two models. The gains must be

bounded by 1/tr(R) = 1/pr0, where R is the autocorrela-
tion matrix of the last p - 1 observations, p is the AR(p)

model order, and r0 is the autocorrelation sequence at lag

0. For example, one can obtain an estimate of this bound

on-line by estimating the autocorrelation sequence ro after

n samples by

_y = _1_ lYkl_ (15)
k=l

as shown in Marple [16]. However, in the work presented
here, 71 and 3'2 were fixed as described above for simplicity.

Further investigation is required to determine a reasonable

way to preset the gains for this approach.

Other recursive methods were considered, such as the

recursive AR algorithm utilizing a Kalman filter scheme.
However, these methods require more prior information,

such as a knowledgeable guess of the covariance of the in-

novations. The gradient approach utilized here, as shown

in Eqs. (12) through (14), is a logical choice for the case
where there is little a priori information. A possible alter-

native estimation method is the fast recursive least-squares

algorithm of Ljung, as described by Marple [16]. This al-

gorithm employs a time-varying gain for the normalized

gradient approach resulting in lower MSE than the recu-

sive LMS algorithm, with approximately the same compu-
tational efficiency.

D. Choice of the A Priori Detection Parameters

In on-line implementation, it was difficult to choose ap-

propriately the a priori parameters h (threshold) and 6

(drift) for Eqs. (8), (9), and (10). The most difficult de-
tection parameter to assign is the drift 6 of Tn. In cases of

small changes in the signal energy or AR parameters, the

cusum is particularly sensitive to the choice of 6. Hinkley

[4] determined the value of 6 to be

i

6 = _(/_1 -/]0) (16)

where/50 is the estimated initial mean, and _u_ is the min-

imum expected final mean of the process. In order to
assign 6, there must be prior knowledge of the expected

behavior of Tn, and therefore prior knowledge of the ex-

pected faults.

It should be noted that the cumulative sum can be run

with an assigned drift bias equal to zero. Instead of using

the Hinkley stopping rule of Eq. (10) to detect a large devi-
ation from the maximum of the cusum, the decision to stop

would occur when the cusum U given by Eq. (8) passes a

set threshold value h _. However, this merely further com-

plicates the problem of setting the decision threshold.

When the Hinkley stopping rule of Eq. (10) is utilized,

tile threshold h must be assigned a priori. In this exper-
iment, a constant value for h was chosen, specific to the
fault transition under examination. However, for practi-

cal implementation when multiple unknown changes can
occur, a constant threshold does not appear feasible. Cer-

tainly a dynamic threshold h based on the variance of T

seems appropriate. In fact, in another application Bas-

seville and Benveniste [17] suggest a threshold

_r 2
h = c -n (17)

6

where c > 0 is a constant, &_ is the variance of the desired

random variable (in this case Tn) estimated on-line, and
6 is assigned the value of one-half the minimum expected

magnitude of change in the mean. The usefulness of this
threshold has not yet been examined in this context.
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E. Signal Energy Change Considerations

As can be seen in the next section, low- to high-energy

transitions in the signal are easily detected with the use of

the detection statistics of Eqs. (8), (9), and (10). However,

when the signal energy drops at the transition, detection
is more difficult. By running a second test in parallel this

obstacle is overcome. This alternate test requires switch-

ing the innovations and variances of model 0 in Eq. (9)

with those of model 1 [9]. The drift in T,_ is more delin-

eated in this alternate test, allowing for better behavior of

the cusum, and thus better detection.

V. Results

A. Simulated Fault Data

As mentioned previously, the motivation in examining
various cumulative sum tests was to find a failure detec-

tion test which was feasible for on-line implementation.

In a previous experiment [1], on-line readings from vari-

ous sensors on the DSS-13 34-m BWG elevation pointing

system were collected, both under normal conditions and
under five hardware faults which were introduced in a con-

trolled manner. The proposed change detection method

(as described above) was tested on this data set. The in-
troduced hardware faults were

(1) Noise in the tachometer feedback path.

(2) Tachometer failure.

(3) Torque share/bias loss to motor.

(4) Integrator short circuit.

(5) Rate loop compensation short circuit.

The simulation of these failures is described in greater de-

tail in [1]. Of the 12 sensors on the control system, the

most easily modeled with a time series was the motor cur-
rent, and this was the sensor data selected for this study.

In the past, a pattern recognition approach utilizing a hid-
den Markov model had been used to attempt detection of

these five simulated fault transitions, with very accurate

results [3]. However, this method requires training data
for each fault a priori. In contrast, the purpose of the

study reported here was to investigate alternative tech-

niques which do not necessarily require training data for
a set of faults which are known a priori. Nonetheless, as

pointed out earlier, the two-model approach investigated
here does in fact require some prior knowledge of the fault
characteristics in terms of setting the drift parameters and

choosing the order of the model.

B. Data Preprocessing

The raw data from the motor current sensor had a sig-
nificant amount of sensor noise and outliers due to sensor

faults. First, linear detrending was performed over the en-

tire sample to remove low-level linear trends. Then the
raw data was bandpass filtered with a tenth-order Butter-

worth filter to remove any further outliers. The passband

of the filter was from 0.5 to 10 ttz for effective smoothing.

C. Fault Transition Detection

In the current detection experiment, transitions from
normal to fault conditions were examined for all five faults.

Data were compiled with normal conditions for the first

1000 samples, and with the desired fault conditions for

the remaining 1000 data samples. At a 50-Hz sampling

rate, this represents only approximately 2/3 of one minute
of real data since the data records used were shortened

for computational reasons. Transitions to faults 1 and 2

increased the signal energy, transitions to faults 3 and 4

preserved the signal energy, and transitions to fault 5 de-
creased the signal energy. Also, fault 1 conditions were

scaled to equal energy with normal conditions to ascertain

whether the test could detect a change in AR parameters
without a signal energy change.

A summary of the important detection parameters is
presented in Table 1. For this table, the AR parameters

of each process were estimated using a block window AR

model algorithm with window size 200. Figure 1 shows a

typical fault transition statistic T and cusum U for a low

to high energy transition. Note the decrease in mean of T

at the time of jump, sample number 1001, and the drop

in cusum U from its maximum near transition. Figures 2

through 7 present the fault transitions examined and the

behavior of the cusum U prior to detection. The filtered

signal shown in the top view of these figures is proportional
to motor current. The cusum U (dimensionless) shown is

equal to zero for the first 200 points, corresponding to
the initial model stabilization period, and then varies with

time until detection, when it is reinitialized to a value of

zero.

1. Faults 1 and 2. Faults 1 and 2 are the simplest

to detect; they have both large increases in signal energy

and distinct changes in the AR parameters 8. Figure 2

shows the behavior of the filtered signal and cusum U for
a transition to fault 1. Detection occurs at sample 1093,

a delay of 93 sample points (or about 2 seconds), which
should be acceptable for DSN operational requirements.

Similarly, the transition to fault 2 conditions is detected
with a delay of only 11 points (0.3 seconds) (Fig. 3).



2. Faults 3 and 4. Faults 3 and 4, the bias loss and

integrator short circuit, show little deviation from nominal

conditions in the AR parameters or signal energy, as seen

in Table 1. Although components were physically removed

or altered, no significant change in sensor data or pointing

performance was observed due to the redundancy in the

system. Figures 4 and 5 show the signal and appropriate
cusum for these transition detectors. Recall that the fault

transition occurs at sample point 1001; clearly there is no

visible change in the signal. As might be expected, the
transition was undetected for both faults.

3. Fault 5. The compensation short circuit, fault 5, is

a transition from high to low signal energy, with changing

AR parameters. For this type of transition, the alternate

T,_ statistic described in Section IV.E is used, which in-
creases the model distance measure for better detection.

Figure 6 shows the signal under consideration and the al-
ternate cusum U _. In this case, detection is possible and

occurs almost instantaneously at transition, with a delay

of only 8 sample points. However small this delay may

be, it should be noted that in this case detection is highly

sensitive to the choice of the threshold h; increasing the
threshold by a small amount may lead to a missed detec-

tion, while decreasing the threshold by a small amount

may lead to multiple false alarms. Thus, it is clear that

the algorithm does detect faults that cause decreases in

signal energy, but with some limitations.

4. Scaled Fault 1 Case. A simulation was run us-

ing a transition to fault 1 conditions which were scaled by

0.25 to match the signal energy of the nominal data. This

test was performed to determine whether a change in AR

parameters withoul a change in signal noise could be de-
tected. Figure 7 shows the signal transitions and cusum

behavior for this case; detection occurred at sample 1151,

a reasonable delay of 150 points (3 seconds). Again there

is some doubt as to exactly how small a transition can be

detected, but at least the test works with the appropriate

choice of parameters.

VI. Limitations of the Approach

A, Prior Knowledge Requirements

Although not conclusive, the results of the five fault de-

tection simulations point out some limitations of the two-
model method. First, some knowledge of the manner in

which faults will affect the AR parameters describing the

data is required. Since this detector relies on the pre-

diction errors of the AR model, prior knowledge of the

model order for both normal and fault conditions is re-

quired. Moreover, this method is not designed to detect

changes in the model order, which may occur for fault
transitions. Such order changes could be detected by a

more sophisticated algorithm which dynamically tries to

fit multiple-order models to the data--however, this would

be both computationally intensive and potentially difficult
to stabilize.

B. Parameter Assignment

A more detailed examination of the preassigned pa-

rameters h (threshold) and 6 (drift bias), which are fault-

specific parameters, would have to be conducted to deter-

mine a systematic method of assignment. A global time-

varying threshold for all the parallel tests based on the

variance of Tn, as given by Eq. (17), is the logical can-
didate for improving the parameter h. The drift bias 6,

corresponding to a change in the mean of the statistic T,

can be difficult to assign. Furthermore, the detection test

is highly sensitive to the choice of 6, so proper assignment
is critical. However, with a larger record of available data,

a small number of trials for each expected fault type is

expected to yield feasible values of 6 for on-line implemen-
tation.

C. False-Alarm Rate

The false-alarm rate has not been derived analytically

for the recursive AR estimation approach for the two-

model approach. For the block window implementation

as presented in Section IV.C, the rate of false alarms was

derived by Basseville in [8] and is equal to the inverse of
the expected value of the detection time Da

1 r 2 , _N^ 1) h]g(oh) = -_ [-_-_(e - -
(_8)

where N is the size of the fixed-length block window and 6
is chosen as a function of the distance of the two probabil-

ity laws describing the process before and after the change.

However, the exact relationship between the block window

model estimation and the recursive normalized-gradient

model estimation is not yet clear, so an analytic expres-
sion for the false-alarm rate has not yet been derived. In

any case, derivation of false-alarm rates for these types

of models requires a complete model of the fault to be

detected and, thus, is of questionable utility for practical

purposes.
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VII. Comparison to the Hidden Markov
model method

In [2,3] a hidden Markov model (HMM) method for

fault detection was reported. The HMM method assumes

that the set of faults is known in advance and training

data are required for each fault. However, once trained the

model is quite robust and does not require any additional

parameters to be set or calibrated. On the other hand,

the two-model method described here does not specifically

require training data in advance; rather, some prior knowl-

edge about the possible faults is required. It would appear
that if training data are available the HMM method is
more robust and accurate as a detector than the two-model

hypothesis testing approach. However, since training data

for specific faults are unlikely to be available in many ap-

plications of interest (particularly at the 70-m antennas

where experimentation is difficult due to operational com-

mitments), methods such as the two-model approach may
be a more practical alternative in the long run. Hybrid

models which combine the better features of each approach

are worth further investigation.

VIII. Conclusions

The use of a two-model cumulative sum detection

scheme has been investigated for on-line detection of faults

in a dynamic system. This method involves detecting the

change in the mean of a function defined on the predic-
tion errors of two recursive AR models estimated sequen-

tially on-line. The algorithm detects changes in the AR

model parameters or the signal energy. Experimental re-
sults were presented for this two-model method for five
controlled hardware faults at the DSS 13 34-m BWG an-

tenna control assembly. The following conclusions can be
made in summary:

(1) This method is feasible if prior knowledge of faults
is available.

(2) This method can be sensitive to parameter choices.

Thus, making more robust detectors which require
fewer parameter choices and prior assumptions
would be useful.
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Table 1. Detectlon parameters.

Detection time
Threshold Drift

Conditions h _ Dh units of 7,
_" = 20 msec

AR parameters

01,02, _3, _4, _5
Signal energy _

Nominal -- -- --

Fault 1 500 -0.04 1093

Fault 2 500 -8.0 1011

Fault 3 50 -0.01 N/A

Fault 4 50 -0.01 N/A

Fault 5 35 -0.10 1009

--0.41, -0.21, -0.12, --0.11, -0.05

--1.61, +0.97, -0.27, --0.13, --0.10

--0.85, --0.37, --0.10, -{-0.07, -,}-0.29

-0.40, --0.17, --0.13, -0.14, -0.05

-0.37, --0.18, --0.14, --0.14, -0.06

-0.02, +0.03, -0.02, 0.0004, -0.06

0.9897

3.9677

3.4507

1.1861

0.9333

0.9891

a Data units are proportional to one Joule; the value of the proportionality constant is unknown.
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Appendix

Derivation of Detection Statistic T

The derivation of the two-model distance metric T, as

presented by Basseville [12], is replicated for the reader's
convenience here.

Recall Eq. (5) which gives the distance metric T_ at
time k, based on the Kullback conditional information-

theoretic distance between probability laws pO (ykly k-l)

: )

dy

where I__l is given by

o, o(,_o0:-,)'x log -Z-f- +
0,1 2"_e2o

(A-4)

(A-l)

When the observations Yk are independent identically dis-

tributed Gaussian random variables, the conditional prob-

abilities are given by Eq. (7):

V/_0.eo

pX (yklyk-1) _ 1
M]_O" et

(A-2)

With direct substitution, Tk becomes

1 0.,2O (Y - 0°Y-t-l) 2

Tk = - _ log _ + 20.,2O

Integrating,

1 _- 0.,2O 1 1

Ik-I = _,_lus 7v: + 2 20.21

where

I(A, B) = f l_e[-(v-a)_]12o_,°
0.:x/27r

x (y - B) _ dy (A-6)

= 0.,2O+ (B - A) _ (A-7)

Moreover, by observation,

01"_k-1 - O°Y k-1 = t ° - d (A-8)

Equations (A-5) through (A-8) show that Eq. (9) holds

(y_01"_-1) 2 1[ 0",2o (_2) 2 (e__ 2 (el - e°) 2 ]
2a_, + Ik-1 (A-3) Tk = _ 1 - _ + 0.o a: a2"o

(A-9)
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